Ollivier-Ricci curvature convergence in random geometric graphs

نویسندگان

چکیده

Connections between continuous and discrete worlds tend to be elusive. One example is curvature. Even though there exist numerous nonequivalent definitions of graph curvature, none known converge in any limit traditional definition curvature a Riemannian manifold. Here we show that Ollivier random geometric graphs manifold converges the continuum Ricci underlying manifold, but only if properly generalized apply mesoscopic neighborhoods. This result establishes first rigorous link applicable networks smooth spaces.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ollivier-Ricci curvature on multi-channel interference constrained wireless networks

This paper investigates the Olivier-Ricci curvature (ORC) characteristics of a low-power wireless network deployment. We quantitatively analyze how the OCR varies among different channels of a IEEE 802.15.4-based network heavily influenced by external interference. And, finally, verify the correlation between the topology curvature of network graphs and the performance of time-scheduled protoco...

متن کامل

Ricci Curvature of Graphs

We modify the definition of Ricci curvature of Ollivier of Markov chains on graphs to study the properties of the Ricci curvature of general graphs, Cartesian product of graphs, random graphs, and some special class of graphs.

متن کامل

Ricci Curvature and Convergence of Lipschitz Functions

We give a definition of convergence of differential of Lipschitz functions with respect to measured Gromov-Hausdorff topology. As their applications, we give a characterization of harmonic functions with polynomial growth on asymptotic cones of manifolds with nonnegative Ricci curvature and Euclidean volume growth, and distributional Laplacian comparison theorem on limit spaces of Riemannian ma...

متن کامل

Max - Planck - Institut für Mathematik in den Naturwissenschaften Leipzig Ollivier ’ s Ricci curvature , local clustering and curvature

In Riemannian geometry, Ricci curvature controls how fast geodesics emanating from a common source are diverging on average, or equivalently, how fast the volume of distance balls grows as a function of the radius. Recently, such ideas have been extended to Markov processes and metric spaces. Employing a definition of generalized Ricci curvature proposed by Ollivier and applied in graph theory ...

متن کامل

Ollivier-ricci Curvature and the Spectrum of the Normalized Graph Laplace Operator

We prove the following estimate for the spectrum of the normalized Laplace operator ∆ on a finite graph G, 1− (1− k[t]) t ≤ λ1 ≤ · · · ≤ λN−1 ≤ 1 + (1− k[t]) 1 t , ∀ integers t ≥ 1. Here k[t] is a lower bound for the Ollivier-Ricci curvature on the neighborhood graph G[t] (here we use the convention G[1] = G), which was introduced by Bauer-Jost. In particular, when t = 1 this is Ollivier’s esti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review research

سال: 2021

ISSN: ['2643-1564']

DOI: https://doi.org/10.1103/physrevresearch.3.013211